Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42.878
1.
BMC Vet Res ; 20(1): 187, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730463

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS: In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION: Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.


Antiviral Agents , Histone Demethylases , Porcine epidemic diarrhea virus , Virus Replication , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/pharmacology , Virus Replication/drug effects , Histone Demethylases/antagonists & inhibitors , Swine , Chlorocebus aethiops , Swine Diseases/virology , Swine Diseases/drug therapy , Coronavirus Infections/veterinary , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Vero Cells
2.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38692139

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Guanidine , Influenza A virus , RNA, Viral , SARS-CoV-2 , Specimen Handling , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Influenza A virus/drug effects , Influenza A virus/genetics , Guanidine/pharmacology , Guanidine/chemistry , RNA, Viral/genetics , Humans , Specimen Handling/methods , Genome, Viral , COVID-19/virology , COVID-19/diagnosis , Chlorocebus aethiops , Vero Cells , Virus Inactivation/drug effects , Animals , RNA Stability/drug effects , Containment of Biohazards , Guanidines/pharmacology , Guanidines/chemistry , Salts/pharmacology , Salts/chemistry
3.
BMC Vet Res ; 20(1): 192, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734600

BACKGROUND: Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS: The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS: Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.


Anti-Bacterial Agents , Escherichia coli O157 , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Nanoparticles , Nisin , Yogurt , Nisin/pharmacology , Nisin/chemistry , Yogurt/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli O157/drug effects , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservatives/pharmacology , Vero Cells , Food Microbiology , Chlorocebus aethiops , Food Preservation/methods
4.
Methods Mol Biol ; 2808: 1-7, 2024.
Article En | MEDLINE | ID: mdl-38743358

We have adopted a real-time assay based on a dual-split reporter to assess cell-cell fusion mediated by the measles virus (MeV) membrane fusion machinery. This reporter system is comprised of two expression vectors, each encoding a segment of Renilla luciferase fused to a segment of GFP. To regain function, the two segments need to associate, which is dependent on cell-cell fusion between effector cells expressing the MeV fusion machinery and target cells expressing the corresponding MeV receptor. By measuring reconstituted luciferase activity, we can follow the kinetics of cell-cell fusion and quantify the extent of fusion. This assay lends itself to the study of the MeV fusion machinery comprised of the attachment and fusion glycoproteins, the matrix protein, and the MeV receptors. Moreover, entry inhibitors targeting attachment or fusion can be readily screened using this assay. Finally, this assay can be easily adopted to study the entry of other members of the Paramyxoviridae, as we have demonstrated for the henipaviruses.


Cell Fusion , Measles virus , Virus Internalization , Measles virus/genetics , Measles virus/physiology , Humans , Animals , Cell Fusion/methods , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Chlorocebus aethiops , Cell Line , Vero Cells , Luciferases, Renilla/genetics , Luciferases, Renilla/metabolism
5.
Methods Mol Biol ; 2808: 57-70, 2024.
Article En | MEDLINE | ID: mdl-38743362

RNA viruses generate defective genomes naturally during virus replication. Defective genomes that interfere with the infection dynamics either through resource competition or by interferon stimulation are known as defective interfering (DI) genomes. DI genomes can be successfully packaged into virus-like-particles referred to as defective interfering particles (DIPs). Such DIPs can sustainably coexist with the full-length virus particles and have been shown to negatively impact virus replication in vitro and in vivo. Here, we describe a method to generate a clonal DI genome population by reverse genetics. This method is applicable to other RNA viruses and will enable assessment of DIPs for their antiviral properties.


Defective Viruses , Genome, Viral , Morbillivirus , Reverse Genetics , Virus Replication , Reverse Genetics/methods , Defective Viruses/genetics , Animals , Virus Replication/genetics , Morbillivirus/genetics , Humans , Virion/genetics , Vero Cells , Chlorocebus aethiops , RNA, Viral/genetics
6.
Methods Mol Biol ; 2808: 209-224, 2024.
Article En | MEDLINE | ID: mdl-38743373

The plaque reduction neutralization test (PRNT) and the enzyme-linked immunosorbent assay (ELISA) are both widely used to assess immunity to infectious diseases such as measles, but they use two different measurement principles: ELISA measures the ability of antibodies to bind to virus components, while the PRNT detects the aptitude of antibodies to prevent the infection of a susceptible cell. As a result, detection of measles virus (MV) neutralizing antibodies is the gold standard for assessing immunity to measles. However, the assay is laborious and requires experience and excellent technical skills. In addition, the result is only available after several days. Therefore, the classical PRNT is not suitable for high-throughput testing. By using an immunocolorimetric assay (ICA) to detect MV-infected cells, the standard PRNT has been developed into a focus reduction neutralization test (FRNT). This assay is faster and has improved specificity. The FRNT described here is extremely useful when immunity to measles virus needs to be assessed in patients with a specific medical condition, such as immunocompromised individuals in whom presumed residual immunity needs to be assessed. The FRNT is not generally recommended for use with large numbers of specimens, such as in a seroprevalence study.


Antibodies, Neutralizing , Antibodies, Viral , Measles virus , Measles , Neutralization Tests , Neutralization Tests/methods , Measles virus/immunology , Measles/immunology , Measles/diagnosis , Measles/virology , Humans , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Chlorocebus aethiops , Animals , Vero Cells , Viral Plaque Assay/methods , Enzyme-Linked Immunosorbent Assay/methods
7.
Nat Commun ; 15(1): 4056, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744813

The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we perform a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identify mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we show that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.


Antibodies, Neutralizing , COVID-19 , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , COVID-19/virology , COVID-19/immunology , Animals , Antibodies, Viral/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Chlorocebus aethiops , HEK293 Cells , Vero Cells , Epitopes/immunology , Epitopes/genetics , Cell Line , Mice
8.
Org Biomol Chem ; 22(19): 3986-3994, 2024 May 15.
Article En | MEDLINE | ID: mdl-38695061

Algae-based marine carbohydrate drugs are typically decorated with negative ion groups such as carboxylate and sulfate groups. However, the precise synthesis of highly sulfated alginates is challenging, thus impeding their structure-activity relationship studies. Herein we achieve a microwave-assisted synthesis of a range of highly sulfated mannuronate glycans with up to 17 sulfation sites by overcoming the incomplete sulfation due to the electrostatic repulsion of crowded polyanionic groups. Although the partially sulfated tetrasaccharide had the highest affinity for the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, the fully sulfated octasaccharide showed the most potent interference with the binding of the RBD to angiotensin-converting enzyme 2 (ACE2) and Vero E6 cells, indicating that the sulfated oligosaccharides might inhibit the RBD binding to ACE2 in a length-dependent manner.


Angiotensin-Converting Enzyme 2 , Antiviral Agents , Microwaves , Polysaccharides , SARS-CoV-2 , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Chlorocebus aethiops , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Vero Cells , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemical synthesis , Humans , Animals , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Hexuronic Acids/chemical synthesis , Sulfates/chemistry , Sulfates/pharmacology , Sulfates/chemical synthesis , COVID-19 Drug Treatment , Structure-Activity Relationship
9.
Sci Rep ; 14(1): 10942, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740839

Pradimicin U is a new dihydrobenzo[a]naphthacenequinone compound found to be active on a screen designed to investigate compounds with antimicrobial activity, produced by the actinomycete designated strain FMUSA5-5T. The strain was isolated from a bio-fertilizer of Musa spp. collected from Suphanburi province, Thailand. The chemotaxonomic characteristics and 16S rRNA gene analysis revealed that strain FMUSA5-5T is a member of the genus Nonomuraea. Low genome-based taxonomic criteria, average nucleotide identity (ANI) (82.8-88.3%), average amino-acid identity (AAI) (79.4-87.3%), and digital DNA-DNA hybridization (dDDH) (29.5-38.5%) values and several phenotypic differences between strain FMUSA5-5T and its closest type strains of the genus Nonomuraea indicated that strain FMUSA5-5T represents a novel species of the genus Nonomuraea and the name Nonomuraea composti sp. nov. is proposed for the strain. The crude extract from the culture broth of strain FMUSA5-5T displayed promising antimicrobial activity against several pathogens and led to the isolation of a novel secondary metabolite, pradimicin U. Interestingly, this compound displayed a broad spectrum of biological activities such as antimalarial activity against Plasmodium falciparum K1 (IC50 value = 3.65 µg/mL), anti-Mycobacterium tuberculosis H37Ra (MIC value = 25.0 µg/mL), anti-Alternaria brassicicola BCC 42724 (MIC value = 25.0 µg/mL), anti-Bacillus cereus ATCC 11778 and anti-Staphylococcus aureus ATCC 29213 (MIC values = 6.25 and 1.56 µg/mL, respectively). Moreover, the compound possessed strong anti-human small cell lung cancer (NCI-H187) activity with IC50 value of 5.69 µg/mL, while cytotoxicity against human breast cancer (MCF-7) and Vero cells was very weak (IC50 values of 52.49 and 21.84 µg/mL, respectively).


Anti-Infective Agents , RNA, Ribosomal, 16S , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , RNA, Ribosomal, 16S/genetics , Microbial Sensitivity Tests , Phylogeny , Actinomycetales/genetics , Actinomycetales/isolation & purification , Animals , Thailand , Vero Cells , Musa/microbiology , Plasmodium falciparum/drug effects , Chlorocebus aethiops
10.
BMC Mol Cell Biol ; 25(1): 15, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741034

BACKGROUND: Transfection is an important analytical method for studying gene expression in the cellular environment. There are some barriers to efficient DNA transfection in host cells, including circumventing the plasma membrane, escaping endosomal compartmentalization, autophagy, immune sensing pathways, and translocating the nuclear envelope. Therefore, it would be very useful to introduce an optimum transfection approach to achieve a high transfection efficiency in the Vero cell line. The aim of this study was to compare various transfection techniques and introduce a highly efficient method for gene delivery in Vero cells. METHODS: In the current study, three transfection methods were used, including chemical transfection, electroporation, and lentiviral vector transduction, to obtain the optimum transfection conditions in the Vero cell line. Vero cells were cultured and transfected with chemical transfection reagents, electroporation, or HIV-1-based lentivectors under different experimental conditions. Transfection efficiency was assessed using flow cytometry and fluorescence microscopy to detect GFP-positive cells. RESULTS: Among the tested methods, TurboFect™ chemical transfection exhibited the highest efficiency. Optimal transfection conditions were achieved using 1 µg DNA and 4 µL TurboFect™ in 6 × 104 Vero cells. CONCLUSION: TurboFect™, a cationic polymer transfection reagent, demonstrated superior transfection efficiency in Vero cells compared with electroporation and lentivirus particles, and is the optimal choice for chemical transfection in the Vero cell line.


Electroporation , Genetic Vectors , Transfection , Animals , Chlorocebus aethiops , Vero Cells , Electroporation/methods , Transfection/methods , Genetic Vectors/genetics , Lentivirus/genetics , Transduction, Genetic/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans
11.
Front Cell Infect Microbiol ; 14: 1380736, 2024.
Article En | MEDLINE | ID: mdl-38716191

Introduction: Chikungunya virus (CHIKV) infection is associated with acute clinical manifestations and chronic joint inflammation. CHIKV has emerged as a significant causative agent of central nervous system (CNS) complications, including encephalitis and related sequelae. Microglial cells, crucial for immune responses and tissue repair in the CNS, play a vital role in the host response to viral infections, with their activation potentially leading to either protection or pathology. In this study, the infection biology of CHIKV in the C20 human microglial cell line was investigated. Methods: The permissiveness of C20 cells to CHIKV infection was assessed, and viral replication kinetics were compared to Vero E6 cells. Cytopathic effects of CHIKV infection on C20 cells were examined, along with ultrastructural changes using transmission electron microscopy. Additionally, apoptosis induction, mitochondrial membrane potential, and alterations in cell surface marker expression were evaluated by flow cytometry. Results: CHIKV infection demonstrated permissiveness in C20 cells, similar to Vero cells, resulting in robust viral replication and cytopathic effects. Ultrastructural analysis revealed viral replication, mature virion formation, and distinctive cytoplasmic and nuclear changes in infected C20 cells. CHIKV infection induced significant apoptosis in C20 cells, accompanied by mitochondrial membrane depolarization and altered expression of cell surface markers such as CD11c, CD14, and HLA-DR. Notably, decreased CD14 expression was observed in CHIKV-infected C20 cells. Discussion: The study findings suggest that CHIKV infection induces apoptosis in C20 microglial cells via the mitochondrial pathway, with significant alterations in cell surface marker expression, particularly CD14 that is linked with apoptosis induction. These observations provide valuable insights into the role of human microglial cells in the host response to CHIKV infection and contribute to the knowledge on the neuropathogenesis of this virus.


Apoptosis , Chikungunya Fever , Chikungunya virus , Microglia , Mitochondria , Virus Replication , Microglia/virology , Chikungunya virus/physiology , Humans , Mitochondria/ultrastructure , Cell Line , Chlorocebus aethiops , Animals , Vero Cells , Chikungunya Fever/virology , Membrane Potential, Mitochondrial , Cytopathogenic Effect, Viral
12.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710573

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Antiviral Agents , Herpesvirus 1, Human , Polysaccharides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Herpesvirus 1, Human/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Vero Cells , Humans , Sulfates/chemistry , Sulfates/pharmacology , Respiratory Syncytial Viruses/drug effects
13.
Methods Cell Biol ; 187: 99-116, 2024.
Article En | MEDLINE | ID: mdl-38705632

Correlative Light Electron Microscopy (CLEM) is a powerful technique to investigate the ultrastructure of specific cells and organelles at sub-cellular resolution. Transmission Electron Microscopy (TEM) is particularly useful to the field of virology, given the small size of the virion, which is below the limit of detection by light microscopy. Furthermore, viral infection results in the rearrangement of host organelles to form spatially defined compartments that facilitate the replication of viruses. With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there has been great interest to study the viral replication complex using CLEM. In this chapter we provide an exemplary workflow describing the safe preparation and processing of cells grown on coverslips and infected with SARS-CoV-2.


COVID-19 , SARS-CoV-2 , SARS-CoV-2/ultrastructure , Humans , COVID-19/virology , Vero Cells , Chlorocebus aethiops , Animals , Microscopy, Electron, Transmission/methods , Virus Replication , Microscopy, Electron/methods
14.
AAPS PharmSciTech ; 25(5): 98, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714600

Respiratory diseases caused by viruses are a serious global health threat. Although the use of hand sanitizers containing alcohol and synthetic antiseptic agents is recognized as an effective, simple, and low-cost measure to combat viral transmission, they can harm human health and the environment. Thus, this work aimed to study the efficacy of combining Camellia sinensis and Chamomilla recutita extracts in a skin- and eco-friendly leave-on hand sanitizer to prevent the spread of respiratory viruses. An oil-in-water emulsion containing C. recutita oily extract (5.0%), C. recutita glycolic extract (0.2%) and C. sinensis glycolic extract (5.0%) showed virucidal activity against HAdV-2 (respiratory virus) and two surrogate viruses of SARS-CoV-2 (HSV-1 and MVH-3), showing great potential to prevent the spread of respiratory viruses. These natural extracts combined are also promising to combat a broad spectrum of other viruses, in the form of antiseptic mouthwashes or throat sprays, surface disinfectants, and veterinary products, among others. Complementally, the developed hand sanitizer demonstrated efficacy against bacteria and fungus.


Antiviral Agents , Hand Sanitizers , Plant Extracts , Hand Sanitizers/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Camellia sinensis/chemistry , Animals , SARS-CoV-2/drug effects , Chlorocebus aethiops , COVID-19/prevention & control , COVID-19/virology
15.
BMC Complement Med Ther ; 24(1): 180, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698382

BACKGROUND: Dioscorea bulbifera Linn. has been used for wound care in Thailand. However, a comprehensive evaluation of its antibacterial activity is required. This study aimed to investigate the antibacterial efficacy of D. bulbifera extract against skin-associated bacteria and isolate and characterize its active antibacterial agent, flavanthrinin. METHODS: Air-dried bulbils of D. bulbifera were pulverised and extracted with hexane, dichloromethane, ethyl acetate, methanol, ethanol, and distilled water; vacuum filtered; concentrated; freeze-dried; and stored at -20 ºC. Antibacterial activity of the extracts was assessed using microdilution techniques against several skin-associated bacteria. Thin-layer chromatography (TLC) bioautography was used to identify the active compounds in the extract, which were fractionated by column chromatography and purified by preparative TLC. The chemical structures of the purified compounds were analysed using nuclear magnetic resonance (NMR). The cytotoxicity of the extract and its active compounds was evaluated in Vero cells. RESULTS: The ethyl acetate extract exhibited distinct inhibition zones against bacteria compared to other extracts. Therefore, the ethyl acetate extract of D. bulbifera in the ethyl acetate layer was used for subsequent analyses. D. bulbifera extract exhibited antibacterial activity, with minimum inhibitory concentrations (MICs) of 0.78-1.56 mg/mL. An active compound, identified through TLC-bioautography, demonstrated enhanced antibacterial activity, with MICs of 0.02-0.78 mg/mL. NMR analysis identified this bioactive compound as flavanthrinin. Both D. bulbifera extract and flavanthrinin-containing fraction demonstrated potent antibacterial activity against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and S. epidermidis. The flavanthrinin containing fraction demonstrated low cytotoxicity against Vero cells, showing CC50 values of 0.41 ± 0.03 mg/mL. These values are lower than the MIC value, indicating that this fraction is safer than the initial ethyl acetate extract. CONCLUSIONS: Dioscorea bulbifera extract and its bioactive component flavanthrinin demonstrated significant antibacterial activity against the skin-associated bacteria Staphylococci, including MRSA. Flavanthrinin has potential as a complementary therapeutic agent for managing skin infections owing to its potent antibacterial effects and low cytotoxicity.


Anti-Bacterial Agents , Dioscorea , Microbial Sensitivity Tests , Plant Extracts , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Vero Cells , Chlorocebus aethiops , Animals , Dioscorea/chemistry , Thailand , Bacteria/drug effects
16.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Article En | MEDLINE | ID: mdl-38702622

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Biofilms , Catfishes , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Silver/chemistry , Silver/pharmacology , Animals , Humans , Mucus/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Vero Cells , Fish Proteins/pharmacology , Fish Proteins/chemistry , Fish Proteins/metabolism , Chlorocebus aethiops , Cell Line, Tumor , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Candida albicans/drug effects , Epidermis/metabolism
17.
Nat Commun ; 15(1): 3767, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704407

Tools for accessing and studying organelles remain underdeveloped. Here, we present a method by which giant organelle vesicles (GOVs) are generated by submitting cells to a hypotonic medium followed by plasma membrane breakage. By this means, GOVs ranging from 3 to over 10 µm become available for micromanipulation. GOVs are made from organelles such as the endoplasmic reticulum, endosomes, lysosomes and mitochondria, or in contact with one another such as giant mitochondria-associated ER membrane vesicles. We measure the mechanical properties of each organelle-derived GOV and find that they have distinct properties. In GOVs procured from Cos7 cells, for example, bending rigidities tend to increase from the endoplasmic reticulum to the plasma membrane. We also found that the mechanical properties of giant endoplasmic reticulum vesicles (GERVs) vary depending on their interactions with other organelles or the metabolic state of the cell. Lastly, we demonstrate GERVs' biochemical activity through their capacity to synthesize triglycerides and assemble lipid droplets. These findings underscore the potential of GOVs as valuable tools for studying the biophysics and biology of organelles.


Endoplasmic Reticulum , Intracellular Membranes , Animals , Chlorocebus aethiops , COS Cells , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Cell Membrane/metabolism , Mitochondria/metabolism , Organelles/metabolism , Lipid Droplets/metabolism , Triglycerides/metabolism , Humans , Lysosomes/metabolism
18.
Biol Pharm Bull ; 47(5): 930-940, 2024.
Article En | MEDLINE | ID: mdl-38692871

The coronavirus disease 2019 (COVID-19) is caused by the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19, with the recurrent epidemics of new variants of SARS-CoV-2, remains a global public health problem, and new antivirals are still required. Some cholesterol derivatives, such as 25-hydroxycholesterol, are known to have antiviral activity against a wide range of enveloped and non-enveloped viruses, including SARS-CoV-2. At the entry step of SARS-CoV-2 infection, the viral envelope fuses with the host membrane dependent of viral spike (S) glycoproteins. From the screening of cholesterol derivatives, we found a new compound 26,27-dinorcholest-5-en-24-yne-3ß,20-diol (Nat-20(S)-yne) that inhibited the SARS-CoV-2 S protein-dependent membrane fusion in a syncytium formation assay. Nat-20(S)-yne exhibited the inhibitory activities of SARS-CoV-2 pseudovirus entry and intact SARS-CoV-2 infection in a dose-dependent manner. Among the variants of SARS-CoV-2, inhibition of infection by Nat-20(S)-yne was stronger in delta and Wuhan strains, which predominantly invade into cells via fusion at the plasma membrane, than in omicron strains. The interaction between receptor-binding domain of S proteins and host receptor ACE2 was not affected by Nat-20(S)-yne. Unlike 25-hydroxycholesterol, which regulates various steps of cholesterol metabolism, Nat-20(S)-yne inhibited only de novo cholesterol biosynthesis. As a result, plasma membrane cholesterol content was substantially decreased in Nat-20(S)-yne-treated cells, leading to inhibition of SARS-CoV-2 infection. Nat-20(S)-yne having a new mechanism of action may be a potential therapeutic candidate for COVID-19.


Antiviral Agents , COVID-19 , Cholesterol , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Humans , COVID-19/virology , Cholesterol/metabolism , Vero Cells , Chlorocebus aethiops , Spike Glycoprotein, Coronavirus/metabolism , Animals , Virus Internalization/drug effects , Betacoronavirus/drug effects , Pandemics , COVID-19 Drug Treatment , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Angiotensin-Converting Enzyme 2/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology
19.
Signal Transduct Target Ther ; 9(1): 125, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734691

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 'highly transmissible respiratory pathogen, leading to severe multi-organ damage. However, knowledge regarding SARS-CoV-2-induced cellular alterations is limited. In this study, we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates the EGFR-mediated cell survival signal cascade during the early stage of viral infection. SARS-CoV-2 causes an increase in mitochondrial transmembrane potential via the SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial elongation and the OXPHOS process, followed by enhancing ATP production. Furthermore, SARS-CoV-2 activates the EGFR signal cascade and subsequently induces mitochondrial EGFR trafficking, contributing to abnormal OXPHOS process and viral propagation. Approved EGFR inhibitors remarkably reduce SARS-CoV-2 propagation, among which vandetanib exhibits the highest antiviral efficacy. Treatment of SARS-CoV-2-infected cells with vandetanib decreases SARS-CoV-2-induced EGFR trafficking to the mitochondria and restores SARS-CoV-2-induced aberrant elevation in OXPHOS process and ATP generation, thereby resulting in the reduction of SARS-CoV-2 propagation. Furthermore, oral administration of vandetanib to SARS-CoV-2-infected hACE2 transgenic mice reduces SARS-CoV-2 propagation in lung tissue and mitigates SARS-CoV-2-induced lung inflammation. Vandetanib also exhibits potent antiviral activity against various SARS-CoV-2 variants of concern, including alpha, beta, delta and omicron, in in vitro cell culture experiments. Taken together, our findings provide novel insight into SARS-CoV-2-induced alterations in mitochondrial dynamics and EGFR trafficking during the early stage of viral infection and their roles in robust SARS-CoV-2 propagation, suggesting that EGFR is an attractive host target for combating COVID-19.


COVID-19 , ErbB Receptors , Mitochondria , SARS-CoV-2 , Virus Replication , SARS-CoV-2/drug effects , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/drug effects , Humans , Animals , Mice , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Virus Replication/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Vero Cells , Chlorocebus aethiops , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Membrane Potential, Mitochondrial/drug effects , Oxidative Phosphorylation/drug effects , Signal Transduction/drug effects
20.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732202

Acquiring resistance against antiviral drugs is a significant problem in antimicrobial therapy. In order to identify novel antiviral compounds, the antiviral activity of eight plants indigenous to the southern region of Hungary against herpes simplex virus-2 (HSV-2) was investigated. The plant extracts and the plant compound carnosic acid were tested for their effectiveness on both the extracellular and intracellular forms of HSV-2 on Vero and HeLa cells. HSV-2 replication was measured by a direct quantitative PCR (qPCR). Among the tested plant extracts, Salvia rosmarinus (S. rosmarinus) exhibited a 90.46% reduction in HSV-2 replication at the 0.47 µg/mL concentration. Carnosic acid, a major antimicrobial compound found in rosemary, also demonstrated a significant dose-dependent inhibition of both extracellular and intracellular forms of HSV-2. The 90% inhibitory concentration (IC90) of carnosic acid was between 25 and 6.25 µg/mL. Proteomics and high-resolution respirometry showed that carnosic acid suppressed key ATP synthesis pathways such as glycolysis, citrate cycle, and oxidative phosphorylation. Inhibition of oxidative phosphorylation also suppressed HSV-2 replication up to 39.94-fold. These results indicate that the antiviral action of carnosic acid includes the inhibition of ATP generation by suppressing key energy production pathways. Carnosic acid holds promise as a potential novel antiviral agent against HSV-2.


Abietanes , Adenosine Triphosphate , Antiviral Agents , Herpesvirus 2, Human , Plant Extracts , Virus Replication , Abietanes/pharmacology , Virus Replication/drug effects , Chlorocebus aethiops , Vero Cells , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/biosynthesis , Humans , Animals , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/physiology , Antiviral Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , HeLa Cells
...